CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

نویسندگان

  • Ji-Feng Fei
  • Maritta Schuez
  • Akira Tazaki
  • Yuka Taniguchi
  • Kathleen Roensch
  • Elly M. Tanaka
چکیده

The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration

Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. ...

متن کامل

O27: The Role of Hydrogels and Cell Based Therapies in Regeneration of Spinal Cord Injury

Spinal cord injury (SCI) is one of the devastating conditions leading to functional and neurological deficits following road traffic accidents. To date, there is no definite treatment for repairing damaged spinal cord tissue. In this regard, cell therapy opens a new window in front of scientists by using different cells such as mesenchymal stem cells, olfactory ensheathing cells, Schwann cells,...

متن کامل

A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors.

Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluores...

متن کامل

Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration.

Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomeno...

متن کامل

Spinal Cord Cells from Pre-metamorphic Stages Differentiate into Neurons and Promote Axon Growth and Regeneration after Transplantation into the Injured Spinal Cord of Non-regenerative Xenopus laevis Froglets

Mammals are unable to regenerate its spinal cord after a lesion, meanwhile, anuran amphibians are capable of spinal cord regeneration only as larvae, and during metamorphosis, this capability is lost. Sox2/3+ cells present in the spinal cord of regenerative larvae are required for spinal cord regeneration. Here we evaluate the effect of the transplantation of spinal cord cells from regenerative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014